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We shall consider the nonstationary potential flow of a gas, assuming a 
polytropic equation of state. For this case, the velocity components ul, 

9’ u7 in Cartesian coordinates x1, x2, x3, and the square of the velo- 
city of sound 8 satisfy the equations 

&ii hii 
x +&K~+K;~=O (i - 1, ?, 3) (Euler’s equations) 11) 

I; 

*~~e~~+K~uk~=o (continuity equation) 

B k 
rot u = 0 (potential condition). 

Here K = l/(y - 1) and y is the adiabatic index. The solution of the 
system of equations (1) gives a travelling wave of rank r if the rank of 

is equal to r, for a given solution t I 1. Nikolsky, with the help of a 
#ranking function’ d which he introduced, investigated ‘functions of the 
second rank, 

c(ul. u2) = 2 Ukxk - ‘p 

k 

for the case of potential, stationary flows (here (b is the velocity PO- 

tential). He obtained the differential equations for the functions h and 
3. assuming that u3 = @ul, u,). Ryzhov [ 2 ] investigated double waves in 
the case of potential nonstationary flow. In reference 1 1 1 double waves 
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in two dimensions were studied, without assuming the flow to be potential. 

In the present note we investigate triple waves (waves of rank 31 for 
the case of three-dimensional, potential, nonstationary flow, by intro- 

ducing the “ranking function” (u,, ~2, u7, t). 

We shall first consider the general case, for which 8 = 8(u,, ~2, u31 

and u 1’ u2* u3 are functionally independent; the case Us = I(r(ul, u,) will 
be considered later. 

Since the flow is potential, we have Cauchy’s integral 

2 + + (UlZ + uza + ZQ) + x0 = F (t) 

where F(t) is an arbitrary function of time, and 

8Q 
q- = 9 (i=l, 2, 3) 

Next we introduce the function h defined by 

0=X X&Uk - xte - 9 
k 

and write its total differential 

dv =x (gk - ~6,) du, - (g +x0 dt, ) 
k 

(4) 

(5) 

(6) 

(7) 

Thus h is a function of ul, ~2, u3, and t, its partial derivatives 
being as follows: 

aa 
~=“i- xtei, apl T:== - ‘X - x0 (8) 

Waking use of equation (41, the second equation of (8) may be written 
in the form 

07 - _1. (ula + 2432 + us*) - F (t) 
at- 2 (9) 

Integrating (9) with respect to t. we obtain 

1 
‘FJ = - (ula + use + usa) t + (z, (ul, uz, us) + F” (t), F” (t) =- 

2 s 
F (t) dt (10) 

where @(I+, u2, u3) is some function, undetermined so far, 

We Put (P(u,, ta2, u3) in the form 

CD (Ulr use WI = f (u? + UT? + usy + Y.n (Ul, ua, L(s)) ($1) 

and differentiate (10) with respect to ui. Then the first equation of (8) 
may be presented in the form 
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Euler’s equation of motion will be satisfied if Cauchy’s integral holds, 

and it is necessary only to satisfy the continuity equation. Using the 

equations 

and substituting aa,@t from Euler’s equations, we put the continuity 

equation in the form 

(Ai, = a,,e - XWiBk) (i, k=l. 2, 3) 

Let 

(15) 

in some region of x1, x2, x3, t. Then, carrying out the hodograph trans- 

formation between the variables ul, u2, u3 and x1, x2, x3, in equation 

(14), we will have, for fixed t, 

From (12) we obtain 
3X. 

-J- == “rIik + Bik + t (Xeik+ Fik), rrik = & , au, 1. k 
%e= -& 

k 
(17) 

where Si, is the Kronecker symbol, 

With cl?), equations (16) may be put in the form 

l-0 + r,t + ret2 :=: 0 118) 

where r;, r’,,, 1’; are functions only of ul, u2, u3. 

Since equation (18) is valid for arbitrary values of t. we conclude 

that 
ri = 0 (i=O. 1, 2) (W 

in which the expression for ri is as follows: 

ik 

where 
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Lik2 = (- Qi+k xemp + %n, x%p + %a, 
x%a* + Lq 4tq + St, 

and in all relations we have m, n f k, I < n; p, q f i, p < q. 

The equation r2 = 0 is a nonlinear, second order partial differential 

equation for the function 8. It may be posed as the Cauchy problem, or. 

analogously to the problem posed in reference 11 1 as a Goursat problem 

with two arbitrary functions of two variables. 

Without posing any definite gasdynamic problems and without invest- 

igat ing, in the present note, questions of uniqueness of solutions, we 

note that, after the function 8 is found, the system of equations rO = 0 

and ri = 0 (in which the function n appears) is compatible, and has, for 

instance, the solutions 

l-IIe+fckuk+ c (ck = const, C = con&) (20) 
k 

In the solution of a definite gasdynamic problem, it is necessary, 

after determining the function 8, to find the function n which satisfies 

the two equations r,, = 0 and r1 = 0, and the particular conditions of the 

problem, in order to obtain a unique solution. 

After determination of the functions n and 8, the flow in the xi, x2, 

%3’ t plane is found from equations (8). 

We note that a completely analogous application of the method in the 

two-dimensional case leads to two differential equations for the functions 

@ and 8, which are identical with the equations obtained for that case in 

reference [ 1 1 . 

Next we examine the functional dependence u3 = I/J/J(u~, u2). We introduce, 

as before, the function h , but with a more restricted dependence on t: 

(21) 

Taking the total differential, we find that h is a function of u1,u2,t 

av --xi+ $$X& av a? at= at' 
w -- 

aui qi = aui @=I, 2) 

Using relation (4) and also the relations 
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which follow from the second equation in (221, we calculate the deriva- 
tives a @id%,, de/&, du3/dxi and put the expressions for them in the 
continuity equation. This then takes the form 

Here 

(24) 

In equation (24) we carry out the hodograph transformation for the 
Pairs of variables ul, u2 and x1, .x2. Let 

in some region. We exclude the case _?= 0. Differentiating the first 

equality in (22) with respect to ul, u2, for fixed x3, t, we find the ex- 
PreSSiOnS for axi/duk (i, k = 1, 2). Then, after carrying out the trans- 
formations, equations (24) may be put in the form 

T, + T,Q “r ‘f*aQ = 0 (26) 

where Toi T1, T2 are functions of ul, u2, t. 

Since x3 is arbitrary, it is necessary that Ti = 0, i = 0, 1. 2, the 
expressions for Ti then become as follows: 

Equation (28) allows two possibilities. Let us consider the first case 

R, = F’ (t) i_ --g+- = 0 

Hence 
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av 
F (t) + -;ii = A (Ul, ua). V = A (~1, ua) t + X (UI, ua) - s F (t) dt (2% 

where I\ and x are certain functions. 

In this case equations (27) will give three third order equations for 

$, I\, and x, which are the same as the system obtained in reference t2 I, 

and which describe double waves. 

Let us consider the second case: 

ay aq a24 a --- 
aq au22 ( ) au,aue =O 

Equation (30) is the equation of developed surfaces, if cylindrical 

surfaces of the form f(ui, uz) = const are excluded, In this case 

A (a,, “38 t) has to satisfy equations (271, and it is necessary. general- 
ly speaking, to investigate their compatibility for a chosen $. 

We have an example, for which these two equations prove to be com- 

patible and new flows are obtained. Specifically, consider a flow with 

(ii = am + we + a8 (3~~ = const) 

The equation T, = 0 is automatically satisfied for such a flow. For 

h. (a,, U2’ t) there is left one equation, To = 9, with $i = al, $2 = ~2 
as its coefficients. 

We also note that all the flows investigated have straight character- 
istics in the zl, x2* x3, t plane, as follows from equations (8) and (22). 

In conclusion I wish to thank my scientific adviser, N.N. Ianenko, for 
his valuable critical comments. 
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